Эволюция методов визуализации коллекций научных публикаций

Main Article Content

Зинаида Владимировна Апанович

Аннотация

Методы визуализации информации давно зарекомендовали себя как инструмент, позволяющий понимать данные большого объема. Визуализация коллекций научных публикаций является частным случаем визуализации информации. В статье рассмотрены задачи, решаемые при помощи визуализации, модели и методы анализа текстовой информации, а также новые подходы к визуализации документов. Особое внимание уделено тому, каким образом методы визуализации связаны с методами анализа коллекций научных публикаций.

Ключевые слова:

визуализация коллекций документов, анализ текстов, алгоритмы визуализации текстов и метаданных, LDA, NMF, word2vec.

Article Details

Как цитировать
Апанович, З. В. (2018). Эволюция методов визуализации коллекций научных публикаций. Электронные библиотеки, 21(1), 2-42. извлечено от https://elbib.ru/article/view/448
Биография автора

Зинаида Владимировна Апанович

Старший научный сотрудник Института Систем Информатики СО РАН, доцент Новосибирского государственного университета. Сфера научных интересов – визуализация информации, визуализация графов, Semantic Web.

Библиографические ссылки

1. Garfield E. Historiographic Mapping of Knowledge Domains Literature// J. Inform. Sci. 2004. V. 30, No. 2. P. 119–145.
2. Apanovich Z.V. Problems of Visualization of Citation Networks for Large-Science-Portals //ROMAI J. 2012. V. 8, No. 2. P. 13–26.
3. Small H. Visualizing Science by Citation Mapping// J. Amer. Soc. Inform. Sci. 1999. V. 50, No. 9. P. 799–813.
4. Henry N., Fekete J.-D., Mcguffin M. Nodetrix: A Hybrid Visualization of Social Networks // IEEE Trans. Vis. Comput. Graphics. 2007. V. 13, No. 6. P. 1302–1309.
5. Gan Q., Zhu M., Li M., Liang T., Cao Y., Zhou B. Document Visualization: An Overview of Current Research// Wiley Interdisciplinary Reviews: Computational Statistics. 2014. V. 6, No. 1. P. 19–36.
6. Apanovich Z.V., Vinokurov P.S., Elagin V. A. An Approach to visualization of knowledge portal content // Bulletin of the Novosibirsk Computing Center. Series: Computer Science. 2009. Т. 29. P. 17-32.
7. Strobelt H, Oelke D, Rohrdantz C, Stoffel A, Keim D.A., Deussen O. Document Cards: A Top Trumps Visualization for Dcuments// IEEE Trans Vis Comput Graph. 2009. V. 15. P. 1145–1152.
8. Schulz H.-J. Treevis.net: A Tree Visualization Reference // IEEE Computer Graphics and Applications. 2011. V. 31, No. 6. P. 11–15.
9. Aigner W., Miksch S., Schumann H., Tominski C. Visualization of Time-Oriented Data. Springer, 2011. 286 p.
10. Kucher K., Kerren A. Text Visualization Techniques: Taxonomy, Visual Survey, and Community Insights // Proc. of the 8th IEEE PacificVis. 2015. P. 117–121.
11. Beck F., Koch S., Weiskopf D. Visual analysis and Dissemination of Scientific Literature Collections with SurVis // IEEE Trans.Vis. Comput. Graphics. 2016. V. 22, No. 1. P. 180–189.
12. Hofmann T. Probabilistic Latent Semantic Indexing // Proc. the ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR). 1999. P. 50–57.
13. Blei D.M. Probabilistic Topic Models// Communications of the ACM. 2012. V. 55, No. 4. P. 77–84.
14. Alexander E., Kohlmann J., Valenza R., Gleicher M. Serendip: Turning Topics Back to the Text // 2013 IEEE Visualization Poster Proc. (InfoVis ’13).
15. Chuang J., Manning C.D., Heer J. 2012. Termite: Visualization Techniques for Assessing Textual Topic Models// Proc. of the Int. Working Conf. on Advanced Visual Interfaces. ACM, 2012. P. 74–77.
16. Chaney A.J.-B., Blei D.M. Visualizing Topic Models // Int. AAAI Conf. on Social Media and Weblogs, 2012. P. 419–422.
17. Lee H., Kihm J., Choo J., Stasko J., Park H. iVisClustering: An Interactive Visual Document Clustering Via Topic Modeling// Computer Graphics Forum (CGF). 2012. V. 31. P. 1155–1164.
18. Dou W., Wang X., Chang R., Ribarsky W. ParallelTopics: A Probabilistic Approach to Exploring Document Collections // Proc. of IEEE Conf. on Visual Analytics Science and Technology. 2011. P. 231–240.
19. Blundell C., Teh Y.W., Heller K.A. Bayesian Rose Trees // Proc. Int. Conf. Uncertainty Artif. Intell. 2010. P. 65–72.
20. Liu S., Wang X., Chen J., Zhu J., Guo B. TopicPanorama: A Full Picture of Relevant Topics // Proc. of the IEEE Conf. on Visual Analytics Science and Technology (VAST). 2014. P. 183–192.
21. Weiwei Cui, Shixia Liu, Zhuofeng Wu, Hao Wei. How Hierarchical Topics Evolve in Large Text Corpora // IEEE Trans. Vis. Comput. Graph. 2014. V. 20, No. 12. P. 2281–2290.
22. Kuang D., H. Park. Fast Rank-2 Nonnegative Matrix Factorization for Hierarchical Document Clustering // Proc. the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD). 2013. P. 739–747.
23. Choo J., Lee C., Reddy C.K., Park H. Utopian: User-driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization // IEEE Transactions on Visualization and Computer Graphics. 2013. V. 19, No. 12. P. 1992–2001.
24. Minjeong Kim, Kyeongpil Kang, Deokgun Park, Jaegul Choo, Niklas Elmqvist. TopicLens: Efficient Multi-Level Visual Topic Exploration of Large-Scale Document Collections// IEEE Transactions on Visualization and Computer Graphics. 2017. V. 23, No. 1. P. 151–160.
25. Mikolov T., Sutskever I., Chen K., Corrado G.S., Dean J. Distributed Rrepresentations of Words and Phrases and Their Compositionality// Advances in Neural Information Processing Systems. 2013. P. 3111–3119.
26. Berger M., McDonough K., Seversky Lee M. Cite2vec: Citation-Driven Document Exploration via Word Embeddings // IEEE Transactions on Visualization and Computer Graphics. 2017. V. 23, No. 1. P. 691–700.
27. Steyvers M., Griffiths T. Probabilistic Topic Models // Landauer, D McNamara, S. Dennis, and W. Kintsch (eds), Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum. 2007. P. 1–15.
28. Havre S., Hetzler E., Whitney P., Nowel L.l. ThemeRiver: Visualizing Thematic Changes in Large Document Collections // IEEE Transactions on Visualization and Computer Graphics (TVCG). 2002. V. 8, No. 1. P. 9–20.
29. Wei F., Liu S., Song Y., Pan S., Zhou M.X., Qian W., Shi L., Tan L., Zhang Q. TIARA: A Visual Exploratory Text Analytic System // Proc. the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD). 2010. P. 153–162.
30. Sugiyama K., Tagawa S., Toda M. Methods for Visual Understanding of Hierarchical System Structures // IEEE Transactions on Systems, Man and Cybernetics. 1981. V. 11, No. 2. P. 109–125.
31. Gretarsson B., O’Donovan J., Bostandjiev S., H¨ ollerer T., Asuncion A., Newman D., Smyth P. TopicNets: Visual Analysis of Large Text Corpora with Topic Modeling // ACM Transactions on Intelligent Systems and Technology (TIST). 2012. V. 3, No. 2. P. 1–26.
32. Chen F., Chiu P., Lim S. Topic Modeling of Document Metadata for Visualizing Collaborations over Time // Proc. of the Int. Conf. on Intelligent User Interfaces (IUI). 2016. P. 108–117.
33. Heimerl F., Qi Han, Koch S., Ertl T. CiteRivers: Visual Analytics of Citation Patterns // IEEE Transactions on Visualization and Computer Graphics 1. 2016. V. 22, No. 1. P. 190–199.
34. Görg C., Liu Zh., Kihm J., Ch Jaegul, Park H., Stasko J. Combining Computational Analyses and Interactive Visualization for Document Exploration and Sensemaking in Jigsaw// IEEE Transactions on Visualization and Computer Graphics. 2013. V. 19, No. 10. P. 1646–1663.