Извлечение аспектов товаров или услуг из отзывов потребителей с использованием модели условных случайных полей
Main Article Content
Аннотация
Ключевые слова:
Article Details
Библиографические ссылки
2. Pang B., Lee L., Vaithyanathan S. Thumbs up?: sentiment classification using machine learning techniques // Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2002. V. 10. P. 79-86.
3. Рубцова Ю.В. Разработка и исследование предметно независимого классификатора текстов по тональности // Труды СПИИ РАН. 2014. Т. 5, № 36. С. 59-77.
4. Wilson T., Wiebe J., Hoffmann P. Recognizing contextual polarity: an exploration of features for phrase-level sentiment analysis // Computational linguistics. 2009. V. 35, No 3. P. 399-433.
5. Liu B. Sentiment analysis and opinion mining // Synthesis Lectures on Human Language Technologies. 2012. V. 5, No 1. P. 1-167.
6. Zhang L., Liu B. Aspect and entity extraction for opinion mining // Data Mining and Knowledge Discovery for Big data. Springer Berlin Heidelberg, 2014. P. 1-40.
7. Marrese-Taylor E., Velásquez J.D., Bravo-Marquez F. A novel deterministic approach for aspect-based opinion mining in tourism products reviews // Expert Systems with Applications. 2014. V. 41, No 17. P. 7764-7775.
8. Loukachevitch N., Blinov P., Kotelnikov E., Rubtsova Yu.V., Ivanov V.V., Tutubalina E. SentiRuEval: testing object-oriented sentiment analysis systems in Russian // Proceedings of International Conference Dialog–2015. 2015. P. 3-9.
9. Hu M., Liu B. Mining and summarizing customer reviews // Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004. P. 168-177.
10. Popescu A.M., Etzioni O. Extracting product features and opinions from reviews // Natural Language Processing and Text Mining. Springer London, 2007. P. 9-28.
11. Moghaddam S., Ester M. ILDA: interdependent LDA model for learning latent aspects and their ratings from online product reviews // Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2011. P. 665-674.
12. Jin W., Ho H.H., Srihari R.K. OpinionMiner: a novel machine learning system for web opinion mining and extraction // Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2009. P. 1195-1204.
13. Jakob N., Gurevych I. Extracting opinion targets in a single-and cross-domain setting with conditional random fields // Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2010. P. 1035-1045.
14. Titov I., McDonald R. Modeling online reviews with multi-grain topic models // Proceedings of the 17th International Conference on World Wide Web. ACM, 2008. P. 111-120.
15. Brody S., Elhadad N. An unsupervised aspect-sentiment model for online reviews // Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 2010. P. 804-812.
16. Hofmann T. Unsupervised learning by probabilistic latent semantic analysis // Machine learning. 2001. V. 42, No 1-2. P. 177-196.
17. Blei D.M., Ng A.Y., Jordan M.I. Latent Dirichlet allocation // Journal of Machine Learning Research. 2003. V. 3. P. 993-1022.
18. Zhao W.X. et al. Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid // Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2010. P. 56-65.
19. Mukherjee A., Liu B. Aspect extraction through semi-supervised modeling // Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1. Association for Computational Linguistics, 2012. P. 339-348.
20. Sutton C., McCallum A. An introduction to conditional random fields for relational learning // Introduction to Statistical Relational Learning. 2006. P. 93-128.
21. McCallum A.K. MALLET: A Machine Learning for Language Toolkit. 2002.
22. Serge Sharoff, Mikhail Kopotev, Tomaz Erjavec, Anna Feldman, Dagmar Divjak. Designing and evaluating a russian tagset // LREC. 2008.
Представляя статьи для публикации в журнале «Электронные библиотеки», авторы автоматически дают согласие предоставить ограниченную лицензию на использование материалов Казанскому (Приволжскому) федеральному университету (КФУ) (разумеется, лишь в том случае, если статья будет принята к публикации). Это означает, что КФУ имеет право опубликовать статью в ближайшем выпуске журнала (на веб-сайте или в печатной форме), а также переиздавать эту статью на архивных компакт-дисках журнала или включить в ту или иную информационную систему или базу данных, производимую КФУ.
Все авторские материалы размещены в журнале «Электронные библиотеки» с ведома авторов. В случае, если у кого-либо из авторов есть возражения против публикации его материалов на данном сайте, материал может быть снят при условии уведомления редакции журнала в письменной форме.
Документы, изданные в журнале «Электронные библиотеки», защищены законодательством об авторских правах, и все авторские права сохраняются за авторами. Авторы самостоятельно следят за соблюдением своих прав на воспроизводство или перевод их работ, опубликованных в журнале. Если материал, опубликованный в журнале «Электронные библиотеки», с разрешения автора переиздается другим издателем или переводится на другой язык, то ссылка на оригинальную публикацию обязательна.
Передавая статьи для опубликования в журнале «Электронные библиотеки», авторы должны принимать в расчет, что публикации в интернете, с одной стороны, предоставляют уникальные возможности доступа к их материалам, но, с другой, являются новой формой обмена информацией в глобальном информационном обществе, где авторы и издатели пока не всегда обеспечены защитой от неправомочного копирования или иного использования материалов, защищенных авторским правом.
При использовании материалов из журнала обязательна ссылка на URL: http://elbib.kpfu.ru. Любые изменения, дополнения или редактирования авторского текста недопустимы. Копирование отдельных фрагментов статей из журнала разрешается только для научных исследований и персонального использования, но не для коммерческого использования, перепродажи или передачи другому лицу.
Запросы на право переиздания или использования любых материалов, опубликованных в журнале «Электронные библиотеки», следует направлять главному редактору Елизарову А.М. по адресу: [email protected]
Издатели журнала «Электронные библиотеки» не несут ответственности за точки зрения, излагаемые в публикуемых авторских статьях.
Предлагаем авторам статей загрузить с этой страницы, подписать и выслать в адрес издателя журнала по электронной почте скан Авторского договора о передаче неисключительных прав на использование произведения.