Автоматический анализ тональности текстов по отношению к заданному объекту и его характеристикам

Main Article Content

Наталья Валентиновна Лукашевич

Аннотация

Статья посвящена рассмотрению подходов к анализу тональности текстов по отношению к заданному объекту, а также его характеристикам (аспектам). Для решения задачи анализа тональности по отношению к характеристикам сущности необходимо решать также задачи извлечения аспектов для сущности, категоризацию или кластеризацию аспектов по аспектным категориям, определение тональности текста по отношению к заданному аспекту или аспектной категории. Также в статье описывается задание по анализу тональности отзывов пользователей в рамках открытого тестирования систем анализа тональности SentiRuEval.

Ключевые слова:

анализ тональности, машинное обучение, тематическое моделирование, оценочная лексика, SentiRuEval.

Article Details

Как цитировать
Лукашевич, Н. В. (2015). Автоматический анализ тональности текстов по отношению к заданному объекту и его характеристикам. Электронные библиотеки, 18(3-4), 88-119. извлечено от https://elbib.ru/article/view/363
Биография автора

Наталья Валентиновна Лукашевич

Ведущий научный сотрудник НИВЦ МГУ им. М.В. Ломоносова, кандидат физико-математических наук. В списке трудов – более 150 работ в области автоматической обработки текстов и представления знаний.

Библиографические ссылки

1. Pang B., Lee L., Vaithyanathan S. Thumbs up?: sentiment classification using machine learning techniques // Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. 2002. V. 10. P. 79-86.
2. Amigo E., Corujo A., Gonzalo J., Meij E., Rijke M. Overview of RepLab 2012: Evaluating Online Reputation Management Systems // CLEF-2012. 2012.
3. Jiang Long, Mo Yu, Ming Zhou, Xiaohua Liu, Tiejun Zhao. Target dependent twitter sentiment classification // Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL-2011). 2011. P. 151-160.
4. Popescu, A., Etzioni O. Extracting product features and opinions from reviews // Natural language processing and text mining. Springer: London. 2007. P. 9-28.
5. Liu B., Zhang L. A survey of opinion mining and sentiment analysis // Mining Text Data. Springer: US, 2012. P. 415-463.
6. Bagheri A., Saraee M., de Jong F. An unsupervised aspect detection model for sentiment analysis of reviews // Natural Language Processing and Information Systems. Springer: Berlin Heidelberg, 2013. P. 140-151.
7. Glavaš G., Korencic D., Šnajder J. Aspect-oriented opinion mining from user reviews in Croatian // Proceedings of BSNLP workshop, ACL-2013. 2013. P. 18-23.
8. Zhang L., Liu B. Aspect and entity extraction for opinion mining // Data Mining and Knowledge Discovery for Big Data. Springer: Berlin Heidelberg, 2014. P. 1-40.
9. Liu B. Sentiment analysis and Subjectivity // Handbook of Natural Language Processing. CRC Press, Taylor and Francis Group, Boca Raton, 2010. P. 1-38.
10. Gupta N.K. Extracting phrases describing problems with products and services from twitter messages // Computación y Sistemas. 2013. V. 17, No 2. P. 197-206.
11. Ivanov V., Tutubalina E. Clause-based approach to extracting problem phrases from user reviews of products // Analysis of Images, Social Networks and Texts. Springer International Publishing, 2014. P. 229-236.
12. Tutubalina E., Ivanov V. Unsupervised approach to extracting problem phrases from user reviews of products // Proceedings of the Aha! Workshop on Information Discovery in Texts, Coling-2014. 2014. P. 48-53.
13. Feng S., Bose R., Choi Y. Learning general connotation of words using graph-based algorithms // Proceedings of the Conference on Empirical Methods in Natural Language Processing. – Association for Computational Linguistics. 2011. P. 1092-1103.
14. Feng S., Kang J.S., Kuznetsova P., Choi Y. Connotation Lexicon: a dash of sentiment beneath the surface meaning // Proceedings of ACL. 2013. P. 1774-1784.
15. Zhang Lei, Bing Liu. Identifying noun product features that imply opinions // Proceedings of the Annual Meeting of the Association for Computational Linguistics (short paper) (ACL-2011). 2011. P. 575-580.
16. Liu B., Zhang L. A survey of opinion mining and sentiment analysis // Mining Text Data. 2012: Springer US. P. 415-463.
17. Zhang Lei, Liu B. Extracting resource terms for sentiment analysis // Proceedings of IJCNLP-2011. 2011. P.1171-1179.
18. Blair-Goldensohn S., Hannan K., McDonald R., Neylon T., Reis G. A., Reynar J. Building a sentiment summarizer for local service reviews // Proceedings of WWW Workshop on NLP in the Information Explosion Era. 2008.
19. Hu M., Liu B. Mining and summarizing customer reviews // Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2004. P. 168-177.
20. Марчук А.А., Уланов А.В., Макеев И.В., Чугреев А.А. Автоматическое извлечение параметров продуктов из текстов отзывов при помощи интернет-статистик // Труды Международной конференции «Компьютерная лингвистика и информационные технологии, Диалог-2013». 2013. Т. 2. C. 81-91.
21. Moghaddam S., Ester M. Aspect-based opinion mining from online reviews. Tutorial at SIGIR-2012. 2012.
22. Ku Lun-Wei, Yu-Ting Liang, Hsin-Hsi Chen. Opinion extraction, summarization and tracking in news and blog corpora // Proceedings of AAAI-CAAW'06. 2006.
23. Manning C.D., Raghavan P., Schütze H. Introduction to information retrieval. Cambridge: Cambridge University Press, 2008.
24. Scaffidi Ch., Bierhoff K., Chang E., Felker M., Ng H., Jin Ch. Red Opal: product-feature scoring from reviews // Proceedings of Twelfth ACM Conference on Electronic Commerce (EC-2007). 2007. P. 182-191.
25. Frantzi K., Ananiadou S., Mima H. Automatic recognition of multi-word terms: the C-value/NC-value method // International Journal on Digital Libraries, 2000. V. 3, No 2. P. 115-130.
26. Zhu J., Wang H., Tsou B., Zhu M. Multiaspect opinion polling from textual reviews // Proceedings of ACM International Conference on Information and Knowledge Management (CIKM-2009). 2009. P. 1799-1802.
27. Hai Z., Chang K., Cong G. One seed to find them all: mining opinion features via association // Proceedings of the 21st ACM international conference on Information and knowledge management. 2012. ACM. P. 255-264.
28. Qiu G., Liu B., Bu J., Chen C. Opinion word expansion and target extraction through double propagation // Computational Linguistics. 2011. V. 1, No 1. P. 1-18.
29. Loukachevitch N., Nokel M. An experimental study of term extraction for real information-retrieval thesauri // Proceedings of Terminology and Artificial Intelligence Conference TIA-2013. 2013. P. 69-78.
30. Zhuang L., Jing F., Zhu X. Movie review mining and summarization // Proceedings of ACM International Conference on Information and Knowledge Management (CIKM-2006), 2006. P. 43-50.
31. Zhang L., Liu B., Lim S., O’Brien-Strain E. Extracting and ranking product features in opinion documents // Proceedings of International Conference on Computational Linguistics (COLING-2010). 2010. P. 1462-1470.
32. Kovelamudi S., Ramalingam S., Sood A., Varma V. Domain independent model for product attribute extraction from user reviews using Wikipedia // Proceedings of the 5th International Joint Conference on Natural Language Processing (IJCNLP-2010). 2011. P. 1408-1412.
33. Niklas J., Gurevych I. Extracting opinion targets in a single and cross-domain setting with conditional random fields // Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP-2010). 2010. P. 1035-1045.
34. Choi Y., Cardie C. Hierarchical sequential learning for extracting opinions and their attributes // Proceedings of Annual Meeting of the Association for Computational Linguistics (ACL-2010). 2010. P. 269-274.
35. Blei D., Ng A., Jordan M. Latent Dirichlet allocation // The Journal of Machine Learning Research, 2003. No 3. P. 993-1022.
36. Воронцов К.В., Потапенко А.А. Модификации EM-алгоритма для вероятностного тематического моделирования // Машинное обучение и анализ данных. 2013. Т. 1, № 6. C. 657-686.
37. Titov I., McDonald R. A joint model of text and aspect ratings for sentiment summarization // Urbana, 51, 61801. 2008.
38. Zhao Wayne Xin, Jing Jiang, Hongfei Yan, Xiaoming Li. Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid // Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP-2010). 2010. P. 56-65.
39. Zhai Z., Liu B., Xu H., Jia P. Grouping product features using semi-supervised learning with soft-constraints // Proceedings of Coling-2010. 2010. P. 1272-1280.
40. Zhai Z., Liu B., Xu H., Jia P. Clustering product features for opinion mining // Proceedings of the fourth ACM international conference on Web search and data mining. ACM. 2011. P. 347-354.
41. Yu J., Zha Z.J., Wang M., Wang K., Chua T.S. Domain-assisted product aspect hierarchy generation: towards hierarchical organization of unstructured consumer reviews // Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics. 2011. P. 140-150.
42. Andrzejewski D., Zhu X., Craven M. Incorporating domain knowledge into topic modeling via Dirichlet forest priors // Proceedings of ICML. 2009. P. 25-32.
43. Mukherjee A., Liu B. Aspect extraction through semi-supervised modeling // Proceedings of 50th Annual Meeting of Association for Computational Linguistics (ACL-2012). 2012. P. 339-348.
44. Ding X., Liu B., Yu Ph. A holistic lexicon-based approach to opinion mining // Proceedings of the Conference on Web Search and Web Data Mining (WSDM-2008). 2008. P. 231-240.
45. Neviarouskaya A., Prendinger H., Ishizuka M. Recognition of affect, judgment, and appreciation in text // Proceedings of the 23rd International Conference on Computational Linguistics (COLING-2010). 2010. P. 806-814.
46. Macdonald C., Santos R. L., Ounis I., Soboroff I. Blog track research at TREC // SIGIR Forum. 2010. V. 44, No 1. P. 58-75.
47. Dang H.T., Owczarzak K. Overview of the tac 2008 opinion question answering and summarization tasks // Proceedings of the First Text Analysis Conference. 2008.
48. Seki Y. et al. Overview of multilingual opinion analysis task at NTCIR-7 // Proceedings of the Seventh NTCIR Workshop. 2008. P. 185-203.
49. Pontiki M., Galanis D., Pavlopoulos J., Papageorgiou H., Androutsopoulos I., Manandhar S. SemEval-2014 Task 4: aspect based sentiment analysis // Proceedings of International Workshop on Semantic Evaluations SemEval-2014. 2014. P. 27-35.
50. Chetviorkin I., Loukachevitch N. Evaluating sentiment analysis systems in russian // Proceedings of BSNLP Workshop, ACL 2013. 2013. P. 12-16.
51. Loukachevitch N., Blinov P., Kotelnikov E., Rubtsova Y., Ivanov V., Tutubalina E. SentiRuEval: testing object-oriented sentiment analysis systems in Russian // Proceedings of International Conference of Computational Linguistics and Intellectual Technologies Dialog-2015. 2015. V. 2. P. 2-13.
52. Mikolov T., Sutskever I., Chen K., Corrado G.S., Dean J. Distributed representations of words and phrases and their compositionality // Advances in neural information processing systems. 2013. P. 3111-3119.
53. Blinov P.D., Kotelnikov E.V. Semantic similarity for aspect-based sentiment analysis // Proceedings of International Conference of Computational Linguistics and Intellectual Technologies Dialog-2015. 2015. V. 2. P. 23-33.
54. Mayorov V., Andrianov I., Astrakhantsev N., Avanesov V., Kozlov I., Turdakov D. A high precision method for aspect extraction in Russian // Proceedings of International Conference of Computational Linguistics and Intellectual Technologies Dialog-2015. V. 2. 2015. P. 34-43.
55. Tarasov D.S. Deep recurrent neural networks for multiple language aspect based sentiment analysis of user reviews // Proceedings of International Conference of Computational Linguistics and Intellectual Technologies Dialog-2015. 2015. V. 2. P. 53-64.